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The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear
gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when
clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively
captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full
gyrokinetic simulations by such a reduced model allows extraction of the model coefficients.
Scanning physical plasma parameters, such as collisionality and density gradient, it was observed
that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the
higher and varying level of primary mode linear growth rates. The effective growth rate that was
extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also
observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where
clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional
damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may
be negligible in this range. The results imply that when the tertiary instability plays a role, the
dynamics becomes more complex than a simple Lotka-Volterra predator prey. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930127]

Turbulence is one of the important aspects of collective
plasma behavior in magnetic confinement devices whose
understanding requires further study in order to elucidate
the limitations on confinement time. In particular, the self
regulation of plasma turbulence by zonal flows is a key issue
with important potential for the reduction of turbulent trans-
port. Limit cycle oscillations, closely resembling predator-
prey dynamics between fluctuations and large scale plasma
flows (i.e., radial electric fields), have been observed in
various confinement devices during the transition from the
low (L) to high (H) confinement. The limit cycle oscillations
between zonal flows and fluctuations cause the pressure gra-
dient to oscillate as a result of quenching of the turbulent
transport, this allows the system to explore different values
of the pressure gradient and thus go from one fixed point
corresponding to the L-mode to the other one, corresponding
to the H-mode.

Previous works demonstrated that gyrokinetic simula-
tions of closed field line Z-pinch system display distinct
predator-prey dynamics between the zonal and the fluctuat-
ing non-zonal components of the electrostatic potential (i.e.,
/q and /k, respectively, where / is normalized to T0qi/eR),
with the particle and heat flux naturally following the non-
zonal component.1 It was also found that the primary mode
growth rates of gyrokinetic simulations become suppressed
in the presence of zonal flows.1 These results were in accord-
ance with what was already known about the dynamics and
behavior of plasma turbulence and zonal flows in tokamaks.2

In particular, the similarity of these results to ion temperature

gradient (ITG) turbulence in sheared magnetic field3 indi-
cates the robustness of the predator-prey paradigm in diverse
modes and geometries.

In the context of magnetic fusion plasmas, self-regulation
of the micro-turbulence by zonal flows, and the resulting
predator-prey oscillations are thought to be important for the
Low to High confinement (L-H) transition.4–7 Limit cycle
oscillations that may be linked to this dynamics have been
observed in a number of confinement devices during the L-H
transition.8–12 Similar dynamics (with a dominant zonal flow
acting as the top predator) also play an important role in the
wave-number cascade by self-generated zonal flows.13–16

Here, we explore the interactions between spontane-
ously formed zonal flows and small-scale turbulence caused
by linear instabilities with five-dimensional nonlinear gyro-
kinetic GS2 flux-tube simulations17,18 of the Z-pinch geome-
try, in which a cylindrically symmetric plasma is confined by
a poloidal magnetic field Bh(r) and compare the results with
a simple predator-prey model. In Fig. 1, the predator-prey
behavior is shown between the non-zonal and zonal energies:
N ¼

P
k j/kj

2ð1þ k2Þ and Ev ¼ j/qj
2q2, where q is the zonal

flow wavenumber.
Subsequently, the following Lotka Volterra equations

are adopted, in order to fit the time traces of both the zonal
and the fluctuation energy from gyrokinetic simulations
with various values of collisionality ! (normalized to !phys

¼ !
ffiffiffi
2
p

vthi=R) and the density gradient Ln/R. The Lotka
Volterra model can be written as

@N

@t
¼ cef f N % c1NEv; (1)
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@Ev

@t
¼ c2EvN % cZEv; (2)

where ceff is the effective linear growth rate of the prey, c1

and c2 (usually c1¼ c2 with a given normalization of N and
Ev implying a conservation law between the zonal and the
non-zonal components) are the nonlinear interaction coeffi-
cients between the predator and the prey, and cZ is the zonal
flow damping rate. Additional terms such as a damping term
proportional to DxN2 in (1), where Dx is the nonlinear
decorrelation rate, and a nonlinear damping term with cnlE

2
v

in (2) where cnl is a nonlinear zonal damping are common
extensions to the standard Lotka Volterra model used in the
plasma context.19 In this formulation, the prey has an inter-
nal growth proportional to ceff with a nonlinear shear decor-
relation proportional to c1 and a possible nonlinear damping
(i.e., eddy damping) proportional to Dx, while the predator
has a linear damping proportional to cZ but a nonlinear
growth due to coupling to turbulence proportional to c2 and a
possible nonlinear damping proportional to cnl.

Predator-prey dynamics has been extensively studied in
the context of coupled population dynamics in ecosystems of
competing species. This simple idea has a wide range of
applications across different disciplines from actual predator-
prey20 to host-parasite21 to immune system-tumor cell22 inter-
actions as well as dynamics of substitution/innovation in the
adoption of new technologies23 and interaction of social
agents.24 As discussed earlier, turbulence and zonal flows in
tokamak experiments during limit cycles are known to display
the predator-prey-like behaviour as well.8,16 Nonetheless the
detailed mechanism of these observed limit cycle oscillations
in tokamaks have not been fully understood.

The gyrokinetic simulations are performed for a Z-pinch
plasma with b & 1, where the fluctuations are electrostatic
and two dimensional. It was shown in previous studies that
this simple geometry produces results consistent with dipolar
fusion and planetary magnetosphere experiments (LDX at
MIT-Columbia University and RT-1 at University of
Tokyo25,26), and it shares some important characteristics
with other magnetized confinement configurations including
the tokamak.27–29 The system is stable to MHD instabilities
when the gradients are sufficiently weak, in which case the
dominant primary instability is the so-called entropy-
mode.30 This primary instability is in fact a plasma analogue
of the Rayleigh-B"enard instability in ordinary fluids, where
curvature effects, part of which is the centrifugal force, play

a role analogous to gravity in R-B convection, modified by
finite Larmor radius effects. Considering an equilibrium with
equal ion and electron temperatures Ti¼Te, Ln/LT¼ 0, where

L%1
n ¼ 1

n0

dn
dr and L%1

T ¼ 1
T0

dT
dr are the inverse density and

temperature gradient scale lengths, taking k?qi & 1, where
k? is the wavevector perpendicular to the background mag-
netic field B0, qi¼vthi/xci is the ion gyroradius, xci¼ eB0/mic

is the ion gyrofrequency, vthi ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
is ion thermal veloc-

ity, mi is ion mass, e is an electron charge, and c is the speed
of light, and assuming that the collisions are sufficiently
strong, the simple expression from two-fluid theory predicts
an instability threshold such that 10/7<R/Ln< 10=3, where
R is the radius of curvature. The gyrokinetic simulations
with arbitrary collisionalities usually exhibit a threshold
which is about 15% lower.1,29 The simulations are performed
with realistic mass ratio (i.e., mi/me¼ 1836) and the model
conserves total energy, momentum, and particle number.

As shown in the dashed lines in Fig. 1, the interaction
dynamics observed in those gyrokinetic simulations can be
captured reasonably well with the simple predator-prey
equations. Each parameter of the model can be estimated by
fitting it to the gyrokinetic simulations, treating the full
solution of the Lotka-Volterra system (with the same initial
condition as the considered window of gyrokinetic simula-
tion data) as a “fitting function” and the model parameters as
the fitting variables. Here, for the purpose of demonstration
of the principle, we have used least squares fitting. However,
we believe that the fitting technique can be improved in
order to include cases where the predator-prey oscillations
are less prominent, and the system starts to transition to
chaotic behavior (i.e., period doubling, etc.). The field of
extracting models from chaotic data (e.g., Ref. 31) is a vast
field of research and certain features of the candidate models
can be used in simplifying the task of fitting (e.g., Refs. 32
and 33). We leave these perspectives to future work.

Obtaining the model parameters by the fitting procedure
allows us to compare the gyrokinetic collisionality ! and the
zonal flow damping rate estimated by the model czf (normal-

ized to vthi/R), with the assumption that cZ ' czf q
2, where q

(normalized to 1/qi) is the wavenumber of the dominant
zonal flow component (here q¼ 0.5). Notice that since a 2D
slab formulation is used, the zonal flow damping is expected
to have the form of viscosity, whereas in a tokamak, due to
toroidal geometry leading to friction between magnetically
trapped and passing ions, one expects it to have the form of a

FIG. 1. Energy as a function of time,
for zonal (blue) and non-zonal (red)
components for !¼ 0.005 and R/
Ln¼ 1.4 in a gyrokinetic simulation.
The results can be fitted by simple
predator-prey model (shown in dashed
lines).
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drag. As shown in Figs. 2 and 3, the zonal flow damping
rates estimated by fitting with the model (blue triangles)
coincide with the relevant gyrokinetic collisionalities (blue-
dashed curves). In particular, it is shown in Fig. 2 that, when
collisionality ! is lowered by a certain factor, the frequency
of the predator-prey dynamics is reduced roughly by the
same factor. Also, the time honored idea that the fluctuation
level goes up with increasing collisionality (because the
zonal flow damping increases, and it is the zonal flows that
regulate the turbulence level) works rather well.

On the other hand, when density gradient is varied at
constant collisionality, the effective damping stays roughly
constant [i.e., Fig. 3]. This implies that the Kelvin-
Helmholtz (KH)-like instability might play negligible role
compared to the collisional damping effect in regulating the
predator-prey oscillation for the range of parameters that are
considered. In general, it is likely that when the nonlinear
damping of the zonal flow becomes important, the simple
Lotka-Volterra dynamics gets obscured with other nonlinear
effects, so the clean limit cycle behaviour disappears and a
direct least squares fitting no longer works.

These results also demonstrate that the effective linear
growth rate estimated by fitting to the predator-prey model

(red diamonds) stays roughly constant (ceff' 0.02–0.05),
in spite of the variation of the linear growth rate (black
dashed curves which vary clin' 0.05–0.3) when the R/Ln is
increased. This demonstrates self-regulation of the plasma
turbulence in the presence of dominant zonal flows. We also
note that the level of the effective linear growth roughly
agrees with the gyrokinetic “linear” growth rate cgk' 0.05
modified by the presence of zonal flows at saturation level.1

It was also observed that the coupling constants (c1 and
c2) vary strongly with collisionality and density gradient as
shown in Figs. 4 and 5. In particular, as density gradients
increase, the first coupling constant c1 rapidly becomes
smaller, as shown in Fig. 5. This is consistent with the fact
that when the density gradients is increased further (e.g.,
R/Ln' 1.8), the simulations show no longer the clear
predator-prey dynamics. The results suggest that the weaken-
ing of coupling results in the disappearance of the predator-
prey dynamics (i.e., more chaotic nonlinear dynamics
follow). We note, on the other hand, that as collisionality is
lowered ceff goes down, slowing down the frequency of the
oscillation and leading to a Dimits-shift like situation eventu-
ally in the collisionless limit. However, as expected, in such
a state the average zonal flow level (i.e., the offset of Ev)
goes up as well. Moreover, a simple fixed point analysis of
the Lotka-Volterra system suggests that (at least for small
amplitude of the oscillations) the average zonal flow
level should be proportional to ceff/c1. This means that the
coupling constant c1 should go down faster than ceff, as the
collisionality decreases, in order that the average zonal flow
level goes up. Fig. 6 shows the power spectrum of j/j as a
function of frequency. As one exits the range of parameters
where the predator-prey oscillations can be cleanly identi-
fied, multiple frequencies appear (i.e. !¼ 0.02). The domi-
nant predator-prey frequency x0max increases with
collisionality ! (top right panel of Fig. 6) as the zonal flows
are dumped mostly by collisions.

Finally, we found that the nonlinear damping effects
cnl and Dx are probably not significant in the present sys-
tem as long as the clean limit cycle behavior is sustained.
As these terms become important, a more complicated
model with 3 or more equations is necessary. This particu-
lar range of values of the physical parameters for the

FIG. 2. The effective zonal flow damping rates czf, found by fitting gyroki-
netic simulations to predator-prey model, which seems to agree rather well
with collisional damping (dashed-blue curve), and the effective growth rate
ceff, which is roughly constant in spite of the change of the linear growth rate
of the most unstable mode clin, demonstrating self-regulation by zonal flow.

FIG. 3. The effective growth rate ceff, the effective zonal flow damping rates
czf, and the linear growth rate of the most unstable mode clin as a function of
density gradients found by fitting gyrokinetic simulations to predator-prey
model.

FIG. 4. Coupling parameters as a function of collisionality found by fitting
gyrokinetic simulations to the predator-prey model.
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gyrokinetic system is special in that the system with a large
degrees of freedom (i.e., the full gyro-kinetic simulation)
reduces itself to a system with two, through a process akin
to synchronization.34–36

Since the gyrokinetic simulations presented in this letter
were performed on a Z-pinch geometry, their direct rele-
vance to magnetized fusion experiments, and in particular,
tokamaks are questionable. In particular, the fact that there is
no magnetic shear is expected to promote Kelvin-Helmholtz
instability of the zonal flow as compared to the tokamak,
where the magnetic shear works against the vortex-tube
interchange. However, even though magnetic shear is a key
aspect of the tokamak confinement, it is mostly a source of
complication for understanding the nonlinear predator-prey
dynamics. Therefore, simulations in simplified geometry
allow a cleaner determination of its constituents where the
oscillations can be identified clearly and fitted directly with a
simple model.

In tokamaks, limit cycle oscillations akin to predator-
prey oscillations were observed during the transition from
the low to high confinement regimes (i.e., the so-called I-
phase).8,9,11 While the experimental oscillations are not as

clean, a direct fit to the experimental data seems possible
with the basic algorithm we use here (see Figure 7). The pa-
rameters of the fit to the experimental data are found to be
approximately ceff¼ 0.090, czf¼ 0.063, c1¼ 0.0046, and
c2¼ 0.031 in units of cs/R (assuming Te( 2 keV and
R( 2.3 m). The Doppler backscattering (DBS) data that we
have used here is from Ref. 37 (the case presented for
R¼ 2.25 m) for the E)B velocity and the normalized den-
sity fluctuation levels. Note that the fit is not unique since the
data is in arbitrary units, therefore, an offset value has been
added to the E)B velocity and the normalized density fluc-
tuation has been scaled in order to achieve the fit. It is inter-
esting to observe that these parameter values fall within the
range for which the gyrokinetics showed predator-prey
behaviour.

These results underline the important link between the
process of synchronization or entrainment through which a
turbulent system reduces its effective degrees of freedom
and the I-phase limit cycle oscillations that are observed in
the L-H transition in a tokamak. The details of the mecha-
nism of synchronization in different systems may have
different origins, the interaction of individual predator-prey
oscillators (i.e., 3 fluctuating components of the 4-wave
tetrad as the prey and its zonal pair as the predator of a single
predator-prey node) may happen through the interaction with
the mean E)B flow as in the experimental case, or through
the average phase, in a local gyrokinetic simulation. A flux-
driven simulation, which can evolve the profiles, may be
closer to the experiment in these aspects, even though it is
harder to match the experiment.38 Nonetheless, understand-
ing of coupled drift-wave zonal-flow predator-prey networks
requires identification of microscopic interaction mecha-
nisms both in space and in wave-number, which should be
developed in future works.

Limit cycle oscillations involving zonal flows and
fluctuations that were observed in gyrokinetic simulations in
a simplified Z-pinch geometry have been fitted against a

FIG. 5. Coupling parameters found by fitting gyrokinetic simulations to
predator-prey model. The couplings become weaker as density gradients
increases, consistent with the disappearance of clear predator-prey dynamics
of gyrokinetic simulations.

FIG. 6. Power spectrum of j/j as a function of frequency (main panel), and
the dominant predator-prey frequency x0max for a range of ! (top right panel).

FIG. 7. The data from the DIIID tokamak, during the I-phase limit cycle
oscillations,37 for the E)B velocity (arbitrary offset) as well as the normal-
ized density fluctuations in arbitrary units, fitted against a basic Lotka
Volterra model.
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simple predator-prey model of the Lotka-Volterra equations.
This allowed a direct extraction of the coefficients of an
equivalent predator-prey model. The results show that as
long as the clear predator-prey cycle is sustained, the zonal
flow damping is collisional, suggesting that when the
Kelvin-Helmholtz instability of the zonal flow plays an im-
portant role, it breaks-up the clean predator-prey behavior
such that fitting with the simple model is no longer possible.
This also confirms the basic intuition that increasing the col-
lisionality results in increased transport because of the
increased damping of zonal flows, since it is the zonal flows
that limit the turbulence decorrelation. Finally within the
range of parameters where a clean limit cycle behavior was
observed, increasing R/Ln, which results in a clear linear
increase of the linear growth rate, does not lead to an
increase of the effective growth rate, since the effective
growth rate results from a self-organization process between
the fluctuations and the zonal flows. This final point may be
an annoyance for the quasi-linear modeling of turbulent
transport that usually does not take the zonal flows into
account. The reduced model such as Ref. 39 takes into
account the modification of the zonal flow response, how-
ever, ignores the interaction dynamics between zonal flows
and turbulence. A fix may be possible by including the self-
consistent dynamics with the zonal flows in quasi-linear
modeling as is sometimes done in geophysical fluid dynam-
ics (GFD) where zonal flows play an important role as
well.40 Incidentally this somewhat different approach is
called “quasi-linear” in GFD, as it includes the interactions
between zonal flows and fluctuations but ignores the
fluctuation-fluctuation nonlinearities.

The authors appreciate valuable discussions with T. S.
Hahm and Y. Sarazin. This research was supported by the
National Science Foundation under Grant No. NSF PHY11-
25915 and by the grants from ANR-11-JS56-0008 and
IFERC-Helios.
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